Search results for "Protein protein"
showing 6 items of 6 documents
HIPPIE v2.0: Enhancing meaningfulness and reliability of protein-protein interaction networks
2016
The increasing number of experimentally detected interactions between proteins makes it difficult for researchers to extract the interactions relevant for specific biological processes or diseases. This makes it necessary to accompany the large-scale detection of protein-protein interactions (PPIs) with strategies and tools to generate meaningful PPI subnetworks. To this end, we generated the Human Integrated Protein-Protein Interaction rEference or HIPPIE (http://cbdm.uni-mainz.de/hippie/). HIPPIE is a one-stop resource for the generation and interpretation of PPI networks relevant to a specific research question. We provide means to generate highly reliable, context-specific PPI networks …
PINCoC: a Co-Clustering based Method to Analyze Protein-Protein Interaction Networks
2007
Anovel technique to search for functionalmodules in a protein-protein interaction network is presented. The network is represented by the adjacency matrix associated with the undirected graph modelling it. The algorithm introduces the concept of quality of a sub-matrix of the adjacency matrix, and applies a greedy search technique for finding local optimal solutions made of dense submatrices containing the maximum number of ones. An initial random solution, constituted by a single protein, is evolved to search for a locally optimal solution by adding/removing connected proteins that best contribute to improve the quality function. Experimental evaluations carried out on Saccaromyces Cerevis…
Plasmonic Nanosensors for Simultaneous Quantification of Multiple Protein–Protein Binding Affinities
2014
Most of current techniques used for the quantification of protein-protein interactions require the analysis of one pair of binding partners at a time. Herein we present a label-free, simple, fast, and cost-effective route to characterize binding affinities between multiple macromolecular partners simultaneously, using optical dark-field spectroscopy and individual protein-functionalized gold nanorods as sensing elements. Our NanoSPR method could easily become a simple and standard tool in biological, biochemical, and medical laboratories.
Algorithms and tools for protein-protein interaction networks clustering, with a special focus on population-based stochastic methods
2014
Abstract Motivation: Protein–protein interaction (PPI) networks are powerful models to represent the pairwise protein interactions of the organisms. Clustering PPI networks can be useful for isolating groups of interacting proteins that participate in the same biological processes or that perform together specific biological functions. Evolutionary orthologies can be inferred this way, as well as functions and properties of yet uncharacterized proteins. Results: We present an overview of the main state-of-the-art clustering methods that have been applied to PPI networks over the past decade. We distinguish five specific categories of approaches, describe and compare their main features and …
Complex Detection in Protein-Protein Interaction Networks: A Compact Overview for Researchers and Practitioners
2012
The availability of large volumes of protein-protein interaction data has allowed the study of biological networks to unveil the complex structure and organization in the cell. It has been recognized by biologists that proteins interacting with each other often participate in the same biological processes, and that protein modules may be often associated with specific biological functions. Thus the detection of protein complexes is an important research problem in systems biology. In this review, recent graph-based approaches to clustering protein interaction networks are described and classified with respect to common peculiarities. The goal is that of providing a useful guide and referenc…
Modular organization in the reductive evolution of protein-protein interaction networks
2006
Analysis of the reduction in genome size of Buchnera aphidicola from its common ancestor E. coli shows that the organization of networks into modules is the property that seems to be directly related with the evolutionary process of genome reduction.